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Abstract

New paleomagnetic data of the entire Aegean outer-arc are presented. The results indicate a young Pleistocene and
rapid clockwise rotation phase in the western Aegean arc, covering at least Zakynthos and the Peloponessos. The
eastern Aegean arc, incorporating Kassos, Karpathos and Rhodos, also experienced Pleistocene anticlockwise
rotations. The anisotropies of the magnetic susceptibility (AMS) data are in agreement with arc-parallel extension in the
south and south-eastern Aegean arc and arc-normal compression in the north-west, in agreement with structural and
geodetic observations. We compare the paleomagnetic results with the present-day pattern of rotation as computed
from geodetic data, and we find good agreement. The onset of the Pleistocene rotations coincides with the beginning of
uplift and a change in the stress pattern of extension. We compare our findings with existing models for the Aegean
area. ß 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Many paleomagnetic studies have contributed
to the reconstruction of the Neogene evolution
of the Aegean area [1^6]. Kissel and Laj [2]
have postulated an evolution for the Aegean arc
with an almost rectilinear (E^W) starting con¢g-
uration between the Paleocene and the late Burdi-
galian. During the middle Miocene, the western

(Epirus, NW Greece) and eastern Aegean arc
(Bey-Daglari, SW Turkey) started to rotate clock-
wise, respectively anticlockwise. A second, sup-
posedly continuous, phase of rotation was
thought to have occurred only in the western Ae-
gean arc (Ionian islands) during the last 5 Myr.

Since the early nineties, astronomical polarity
time scales and their related high accuracy bio-
stratigraphy provide the possibility to correlate
sections/sites over a large geographic area and to
accurately constrain the timing of tectonic events.
Aided by these new techniques, we decided to ex-
plore the outer Aegean arc. This non-volcanic arc
comprises from west to east: Epirus, the Ionian
islands (Corfu, Lefkas, Kefallonia, Zakynthos),
the Peloponessos, Kythira, Crete, Kassos, Karpa-
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thos and Rhodos (Figs. 1 and 3). In addition, we
studied sediments from the central Aegean island
of Milos. The present paper describes the synthe-
sis of all our paleomagnetic data derived from the
Aegean. We postulate a new tectonic evolution of
the Aegean area and compare our results to geo-
dynamic models that have been proposed for the
region. Furthermore, we evaluate geodetic data
from the region in this new context.

2. Geology and sampling

2.1. Central/southeastern Aegean arc

We sampled 38 localities (691 cores) of sedi-
mentary rocks in the central/eastern Aegean arc
on Rhodos, Karpathos, Kassos, Crete and Milos
(Fig. 1). Ages are not very well constrained since
most sediments lack an age diagnostic biostratig-
raphy. The eastern arc islands are characterized
by topographic highs consisting mostly of Jurassic
to Eocene limestones. On Rhodos, a small ophio-
litic and £ysh unit of Oligocene age can be found
on top of these limestones, surrounded by Mio-
cene to Pleistocene sediments, mostly of continen-
tal, £uvio-lacustrine origin, but some shallow ma-
rine to beach deposits are present. On Karpathos,
the Neogene sediments are restricted to three
small basins in the south of the island, consisting
of Plio/Pleistocene beach deposits (SW and SE)
and of Pliocene shallow marine clays occur (S).
Kassos consists mainly of high peaks of strongly
deformed limestones, but has two small areas with
limestone in the SE and marls and clays in the W,
both of Miocene age. On Crete, close to Hera-
klion, the Messinian limestones are overlain by
Pliocene marl-breccias with some intercalations
of `Trubi-like' sediments, on top of which we
¢nd Trubi-like sediments with sapropels, followed
by shallow marine sandy yellow marls and white
diatomites [7]. The complete succession is seen
near Prassas (PRA in Fig. 1). Only in the north-
ern Heraklion basin, Pleistocene shallow marine
sandy clays and red conglomerates are found. The
central part of Crete contains most of the Plio/
Pleistocene sediments on the island and the largest
(up to 40³) post early Messinian anticlockwise

rotations were detected [5]. The volcanic island
of Milos is located more to the internal part of
the Aegean arc. This inner-arc island contains Pe-
lagonian basement formed by volcanic rocks of
various ages overlain by white tu¤tes and yellow
marls of Plio-Pleistocene age. In the NW of Mi-

Fig. 1. Simpli¢ed geological map of the outer Aegean arc
with sample/site localities (see also Appendix 1). For the ex-
act location of sites from Zakynthos we refer to Duermeijer
et al. [6].
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los, a marine section containing a cyclic alterna-
tion of early Pliocene silty clays and sapropels was
sampled.

2.2. Western Aegean arc

In the western Aegean arc we took 52 sites/sec-
tions (1912 cores) from Miocene to Pleistocene
sediments on the Ionian islands of Lefkas, Kefal-
lonia, Zakynthos, on the Peloponessos and on the
island of Kythira (Fig. 1). The western Aegean is
characterized by NNW^SSE trending sedimentary
units [8] called isopic zones and named from west
to east Pre-Apulian, Ionian, Gavrovo-Tripolitsa,
Pindos, (Sub)Pelagonian and Vardar. Each unit
contains Mesozoic carbonates at its base and is
separated from the juxtaposed unit by a major
Tertiary thrust. In general, the age of deforma-
tion, the degree of metamorphism and tectonism
and the age of the oldest rocks exposed within
each isopic zone all decrease from east to west
[9]. Our sites/sections are mainly from the Pre-
Apulian, Ionian and Pindos zones.

Lefkas consists of Jurassic to Eocene lime-
stones, followed by Oligocene to early Miocene
limestones alternating with marls or coarser
grained material. These sediments are intensely
folded and overlain by (scarce outcrops of) early
middle Miocene marls with sapropels and middle
Miocene turbidities. The Plio-Pleistocene is absent
on Lefkas. Kefallonia has a core of Jurassic to
Paleogene limestones around which Plio-Pleisto-
cene and some Miocene sediments were deposited.
These younger sediments closely resemble the
Miocene to Pleistocene sediments of Zakynthos,
but on Kefallonia they are more deformed, and
they are coarser and thicker, suggesting a similar
but more proximal setting. On Zakynthos, sedi-
ments range in age from Cretaceous to Pleistocene
and occur mostly in approximately parallel NW^
SE trending zones. On the Peloponessos, not
many outcrops of Neogene sediments are ex-
posed; most of the area being covered by Meso-
zoic limestones. Scattered upper Pliocene outcrops
are located in the central-south (silty clay) and
south (continental to shallow marine sand with
occasional silt layers). In the Pyrgos basin of
NW Peloponessos, extensive Plio-Pleistocene

open bay to lagoonal sections are outcropping
[10]. In the center of the Peloponessos, the intra-
montane Megalopolis Basin is exposed, contain-
ing Pleistocene lacustrine sediments, while in the
NE the Corinth and Megara basins are situated.
The Megara basin contains Plio-Pleistocene lacus-
trine, deltaic to £uviatile deposits and is at present
bounded by a NW active normal fault. Nearby,
the actively extending Corinth basin contains
4 Ma old andesites representing the initiation of
the basin [11] and containing Plio-Pleistocene
sandy deposits with a marine in£ux. We have
sampled in the famous Corinth canal. Finally,
the island of Kythira consists of Pre-neogene
basement rocks, overlain by a terrigenous clastic
succession of presumably Tortonian age, overlain,
with an angular unconformity, by an early Plio-
cene calcareous succession.

3. Paleomagnetic results

The detailed paleomagnetic results are listed in
Appendices 1 and 2 (ages are indicated) and dis-
cussed in their context in the synthesis of the data.

3.1. Analysis of the natural remanent
magnetization (NRM)

The analysis and interpretation of the natural
remanent magnetization followed routine proce-
dures detailed elsewhere [6]. The paleomagnetic
results of each region (Appendix 1) are character-
ized on the basis of several criteria and we distin-
guish three types of demagnetization behavior.

3.1.1. Type 1
The results show a linear decay towards the

origin and the present-day ¢eld overprint is de-
monstrably removed (Fig. 2a, b). Some sediments,
typically those from Rhodos and some from Ky-
thira and the Peloponessos, contain a character-
istic remanent magnetization (ChRM) component
which is only entirely removed at 680³C, indicat-
ing hematite, but most of the ChRM is removed
just below 600³C (Fig. 2a), indicating magnetite.
Occasionally, the sediments (e.g. Luxurion on Ke-
fallinia, some sites on the Peloponessos, Milos
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and Karpathos) contain iron-sulphides as domi-
nant carriers, since the ChRM components are
mostly removed at lower temperatures, below
350³C (Fig. 2b). These sediments show alteration
(oxidation of pyrite) starting at 390³C, resulting in
scatter and random directions at higher temper-
atures (Fig. 2b). We regard type 1 as reliable and
use the results to calculate rotations.

3.1.2. Type 2
Sometimes the individual directions per site/sec-

tion are too dispersed for a statistically signi¢cant
mean direction, like the results of Spartia Beach
(Fig. 2e) and Cape Liakas (on Kefallonia), and
the results must be considered with caution. In
some sites/sections (on Milos, the Peloponessos,
Kythira, Kassos and on Rhodos) not all individ-
ual results (of at least seven cores) are reliable and
therefore the means are hardly signi¢cant, but
give merely an indication of the sense of rotation.

Likewise, in rare occasions the inclination is
anomalously large or small, and we regard the
results as indicative only.

3.1.3. Type 3
`Spider-webs' in the demagnetization diagrams

are typically found on Lefkas and in the Miocene
limestones on Kassos with low intensities. We
also include in type 3 overprinted samples with
a large present-day ¢eld overprint until 240^
270³C and containing a cluster or scatter above
this temperature (Fig. 2c). In particular, results
from Plio/Pleistocene sites on Crete and from
some sites on Karpathos and Kassos show a
present-day ¢eld before bedding tilt correction
(Fig. 2d); these sites/sections are considered as
overprinted, but this is hard to distinguish from
non-rotating if the bedding plane is sub-horizon-
tal (Chorio in Fig. 2e). Type 3 is disregarded from
any conclusion.

Fig. 2. (a, b, c) Zijderveld diagrams of selected samples after bedding plane correction. Closed (open) circles represent the projec-
tion of the NRM vector endpoint on the horizontal (vertical) plane; values indicate temperatures in ³C. (d, e, f) Equal area pro-
jection of ChRM directions and their means; circles are 95% (K95) con¢dence regions; closed (open) symbols refer to normal (re-
versed) polarity. In (d, e) squares (circles) denote ChRM directions after (before) bedding plane correction.
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3.2. Anisotropy of the magnetic susceptibility

Analysis of the anisotropy of the magnetic sus-
ceptibility (AMS) can be used to establish the
sedimentary and tectonic history in weakly de-
formed sediments, because of the relationship
with the regional stress ¢eld. In undeformed,
¢ne-grained sediments, the magnetic susceptibility
is dominated by foliation coinciding with the bed-
ding plane (i.e. the minimum axes of AMS, kmin,
are perpendicular to the bedding plane) and a
random orientation of the lineation (i.e. direction
of the maximum axes of AMS, kmax). Upon de-
formation, the lineation quickly aligns along the
direction of maximum extension or, equivalently,
perpendicular to maximum compression.

The Miocene to Pleistocene sediments from the
western Aegean arc and Crete, show NW^SE
alignments of the kmax axes, indicating NW^SE
extension or NE^SW compression (Appendix 2
and Fig. 3). In the eastern Aegean arc (Rhodos
and Karpathos), the Plio/Pleistocene sediments re-
veal a roughly NE^SW alignment of the kmax

axes, implying NE^SW extension or NW^SE
compression (Fig. 3). The Miocene sediments on
Kassos indicate an approximately E^W clustering
of the kmax axes, but with a large error. The clus-
tering of the kmax axes from Plio/Pleistocene sedi-
ments on the Peloponessos are not consistent over
the peninsula, and therefore cannot be averaged.
Likewise, the AMS of the sediments on Milos
shows no clear indication of alignments.

4. Synthesis of data

Many paleomagnetic key investigations have
been carried out by Kissel and Laj ([2] and refer-
ences therein), aided by structural work [12^14].
They have extensively sampled the Neogene in
Greece, visited most of the Aegean outer-arc is-
lands and were the ¢rst to propose a kinematic
time-constrained reconstruction of the Aegean
area. As new techniques developed and more pre-
cise time-constraints can be given to Neogene ma-
rine sediments on the basis of cyclo/biostratigra-

Fig. 3. Distribution of ChRM and AMS data on the Aegean outer-arc. Shaded segment in ChRM plots represents weighted K95

(K95/cos I) with solid line as mean declination (Appendix 1). Shaded segment in AMS data indicates the ND in the AMS analysis
with solid line as mean lineation direction per area (Appendix 2).
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phy, a new study of the sediments in the Aegean
outer-arc is warranted. Our paleomagnetic results
of Miocene to Pleistocene sediments are often
compatible with the earlier results, but our new
data contribute to a more detailed and signi¢-
cantly di¡erent picture of the geodynamics in
the Aegean region (Fig. 3).

4.1. Ionian islands

Based on paleomagnetic data from Corfu (nine
mean directions), Kefallonia (four) and Zakyn-
thos (three), Laj et al. [1] suggested that the west-
ern Aegean arc underwent a V25³ clockwise ro-
tation starting at 5 Ma, hence with a rate of
approximately 5³/Myr. Since a total 45^50³ clock-
wise rotation was revealed from Paleocene to Eo-
cene pelagic limestones [15] which appeared to
include the entire Oligocene [16], it was concluded
that two distinct clockwise rotations must have
occurred in the western Aegean arc, one during
the early to middle Miocene and one during the
last 5 Myr. A recent and more detailed study of
Zakynthos [6], however, has shown a di¡erent
history of at least this part of the western Aegean
arc. These data indicate no rotation between
8.11 and 0.77 Ma, but a 22 þ 5³ clockwise rota-
tion phase took place between 0.77 Ma and Re-
cent.

The Plio/Pleistocene section of Luxurion [17]
along the SW coast of Kefallonia reveals four
polarity zones (N-R-N-R). Most samples are re-
versed and the section covers the Olduvai sub-
chron and the late Matuyama Chron (V1.9^1.0
Ma). The reversed samples (56 cores) give a mean
declination indicating no rotation, while the mean
of the normal samples (14 cores) shows a small
clockwise rotation (Fig. 2f). This is equivalent to
the results of Laj et al. [1] who used their (three)
normal sites to suggest a clockwise rotation. We
prefer to calculate the overall mean of the Lux-
urion section, indicating no signi¢cant rotation
since V1.9 Ma, because the results of the N-R-
N-R sequence do not consistently support an op-
posite sense of rotation. The Miocene and Plio/
Pleistocene sediments on SE Kefallonia seem to
indicate anticlockwise rotations, but the large
scatter precludes any further conclusions. From

Lefkas, no reliable data could be obtained, while
data from Corfu indicate no signi¢cant rotation
since V3.5 Ma, according to earlier published
data [1].

4.2. Peloponessos

The Pliocene sediments show clockwise rota-
tions, both in the S (Kefalas, Gythion) which
agrees with earlier results [1], and in the NW (Pyr-
gos basin [10]). The youngest (probably Pleisto-
cene) sediments in the NW (Pineos), show no ro-
tation. Also the Megalopolis basin (central
Peloponessos) and the Megara/Corinth basin
(NE Peloponessos) contain Pleistocene sediments
covering the Brunhes^Matuyama boundary (0.9^
0.4 Ma) of which the paleomagnetic results of the
Brunhes indicate no rotation. This suggests that
(most of) the Peloponessos underwent a young,
Pleistocene clockwise rotation phase, possibly in
agreement with the results derived from Zakyn-
thos, although age control is less precise.

4.3. Central Aegean

On Crete, upper Tortonian to lower Messinian
paleomagnetic results show varying but predom-
inantly anticlockwise rotations [5]. Rotations are
therefore of post early Messinian age and presum-
ably governed by (local) rotations of fault-
bounded blocks. To better constrain the age of
the anticlockwise rotations, we sampled Plio/Pleis-
tocene sediments in the Heraklion basin (central
Crete). Unfortunately, almost all samples were ei-
ther overprinted, or the bedding plane was sub-
horizontal and no bedding correction could be
applied, necessary for validating a stable ChRM.
Thus, although the Plio/Pleistocene sediments
show no rotation, this may equally be an artefact.
One site (Chersonissos) shows a large anticlock-
wise rotation, but biostratigraphy reveals a Mio-
cene age which agrees well with the post early
Messinian rotations. Overall, the results on Crete
do not allow us to date the rotations better than
post early Messinian [5]. The Miocene and Plio-
cene results from Kythira reveal anticlockwise ro-
tations, but the error is large and therefore this
result may only be considered as indicative.
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Recent paleomagnetic studies of the inner arc
of the Aegean region [3,4] have shown that this
area consists of two major blocks having an op-
posite sense of rotation. The islands of Mykonos
and Tinos indicate post middle Miocene clockwise
rotations, and Naxos and Milos [18] anticlockwise
rotations. The clockwise rotations are consistent
with rotations further to the northwest in Evia
and Skyros [19], suggesting that the clockwise do-
main extends as far as Mykonos [3] and that the
boundary between the two opposite rotating
blocks lies north of Naxos. We note that our re-
sults from Milos are not consistent with those
from literature, since they show both clockwise
and anticlockwise rotations, from di¡erent parts
of the island possibly re£ecting local rotations
only.

4.4. Southeastern Aegean

Le Pichon and Angelier [12] have suggested a
model in which the eastern Aegean arc would
have been rotating anticlockwise. This idea was
supported by a preliminary study of Laj et al.
[20], suggesting a V23³ anticlockwise rotation
on Rhodos. However, a later study by the same
group [1] of ¢ve sites from middle and upper Plio-
cene sediments from Rhodos indicated no signi¢-
cant rotation. Our new Plio/Pleistocene data of
13 sites from Rhodos con¢rm the earlier results
since we ¢nd only anticlockwise rotations for all
sites, having an average rotation of 18 þ 12³. In
addition, the paleomagnetic results from Karpa-
thos and Kassos imply anticlockwise rotations as
well. Furthermore, results from Bey Daglari in
southern Turkey [21] suggest a V30³ anticlock-
wise rotation since 15 Ma. This seems to denote
an eastern arc area of anticlockwise rotations
from Kassos to southern Turkey. The anticlock-
wise rotations are measured in the youngest (Plio/
Pleistocene) sediments from Karpathos and Rho-
dos, implying that this rotation phase took place
some time during the Pleistocene, but the fossil
content of the sediments does not allow a more
precise age estimate.

On both sides of the Aegean arc, our new pale-
omagnetic results indicate a young rotation phase.
In the western arc (Zakynthos and the Pelopones-

sos), this rotation was clockwise and in the east-
ern arc (Kassos, Karpathos and Rhodos) anti-
clockwise both occurring during the Pleistocene,
i.e. at least younger than V1.8 Ma [22].

5. Block rotations inferred from geodetic data

The young age of the paleomagnetically ob-
served rotations raises the question whether these
rotations can also be observed in the present-day
pattern of crustal deformation derived from active
crustal motion monitored by satellite geodesy
through global positioning systems (GPS). The
results of more than 30 occupations of several
local networks (see [23]) and of the reoccupation
by GPS of a 100 year old triangulation network in
central Greece [24] are now combined into one
data set of about 240 velocity vectors [25]. This
data set is one of the subjects of GPS Seismic
hazard IN Greece (SING) project [26] ; it covers
the entire Aegean region and is densest in central
Greece and the Peloponessos. Coseismic e¡ects
are removed from the data. The in£uence of the
Ms = 6.2, June 15, 1995 Egion earthquake (Gulf
of Corinth) is subtracted [27] and only measure-
ments made during four campaigns in the Greve-
na area (northern Greece) after the Ms = 6.6, May
13, 1995 earthquake are included [25]. Further-
more, the orientation of the 100 year triangula-
tion GPS velocity estimates is constrained using
14 sites common to both the triangulation and the
local GPS networks. The results show a high com-
patibility between short-term and 100 year defor-
mation estimates [25]. We removed those sites
that have been measured only twice. The remain-
ing set of 174 vectors is shown in Fig. 4, left
panel.

We assume that crustal deformation encom-
passes slip along faults and continuous deforma-
tion in crustal blocks bounded by the faults. We
apply the purely kinematic inversion technique
developed by Spakman and Nyst [28] to invert
the velocity ¢eld into joint estimates of strain
rates, rotation rates, and fault slip. Fault motion
is parameterized as step functions on 10 to 200
km long great circle fault segments, and continu-
ous deformation as general linear strain and rota-
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tion rate behavior between model nodes de¢ned
by a triangulation of crustal blocks. The inversion
results are slip vectors on fault segments and the
four elements of the velocity gradient tensor at
each model node. We restricted the fault param-
eterization to the largest and most active faults,
implying that continuous deformation can in part
be due to slip on non-parameterized faults. We
apply the regional fault parameterization of Joli-
vet et al. [29], with a more detailed parameteriza-
tion of the Gulf of Corinth [30]. For the inver-
sion, we use the relative velocity di¡erences
between every pair of stations.

The solution shows relatively small fault move-
ments, but the the inclusion of fault motion has
signi¢cant in£uence. Since continuous deforma-
tion can vary discontinuously across fault traces,
anomalously high deformation rates, especially in
the Gulf of Corinth, are avoided. Here, we are
mainly concerned with the rotation rates (the
antisymmetric part of the velocity gradient ten-
sor), presented as ¢nite angles of rotation about
vertical axes (Fig. 4, right panel) ; the results will
be discussed below.

6. Discussion

6.1. Coincident tectonic events during the early
Pleistocene

The onset of the inferred young rotation phase
shows a remarkable coincidence with other tec-
tonic changes in the Aegean. It is generally be-
lieved that a change in stress regime between 0.8
and 0.3 Ma a¡ected the Aegean region [14,31].
NE^SW tensional stress in central and northern
Greece to N^S tension in Turkey prevailed in the
early Pliocene^Early Pleistocene. This changed in
the middle Pleistocene^Recent to NNW^SSE ten-
sional stress in central and northern Greece, and
towards NE^SW tension in western Turkey. Pos-
sibly, the two phases of extension were separated
by a short period of dominant compression
[14,31]. Around the same time, a rapid phase of
rifting opened the Gulf of Corinth [30]. The major
normal fault bounding the Megara basin (NE Pe-
loponessos) was initiated at a similar age of
0.9 þ 0.2 Ma (Collier, personal communication,
1999). The change of stress regime was accompa-
nied by uplift of the entire Aegean outer-arc, in
accordance with much of the relief of southern
Greece having been developed during the last mil-
lion years [32]. All these results imply that the

Fig. 4. Left panel: The velocity vectors with their 3c errors ellipses from a combination of several GPS campaigns [25] de¢ned
with respect to a reference frame ¢xed to Eurasia. Right panel: Contoured geodetic rotation rates scaled to degrees per Myr.
The numbers refer to local (50^100 km scale) averages of rotation rates with 3c errors.
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tectonic regime of the Aegean outer-arc changed
drastically around 1 Ma.

6.2. AMS results

The AMS data derived from the sediments of
the Aegean arc clearly show extension parallel, or
compression perpendicular to the Aegean arc
(Fig. 3), in agreement with similar AMS data
from the Ionian islands [33]. Geodetic data [34],
earthquake focal mechanisms [35], microseismics
[36] and faults observed in the ¢eld [37] suggest
arc-parallel extension for the region between the
volcanic arc and the outer-arc in the southern
Aegean, whereas earthquake focal mechanisms
[38] and ¢eld data [39] imply a prevalence of
arc-normal compression in the NW Aegean arc.
Our AMS data are consistent with the other types
of observations and provides independent support
for the inferred pattern of strain.

6.3. Comparison with active crustal rotation rates

Our new paleomagnetic data modify the tecton-
ic evolution of the outer Aegean arc and indicate
a rapid, Pleistocene phase of rotation; tectonic
rotations prior to this young phase are not well
constrained. The results are consistent with the
crustal rotations derived from the geodetic data
which reveal clockwise rotations in the mainland
of Greece and (small) anticlockwise rotations in

the (south)-eastern Aegean. A narrow band of
strong anticlockwise rotations is located along
the Gulf of Corinth, probably related to the com-
plicated fault structure in this area. We ¢nd sig-
ni¢cant clockwise rotations of Lefkas, Kefallonia
and Zakynthos, and in the western and central
Peloponessos.

In comparing the geodetic and paleomagnetic
results, care should be taken for two reasons.
Geodetic rotation rates are representative for
the period of observation (e.g. approximately
100 years), hence any comparison must rely on
the assumption that the present-day pattern is
representative for the past 0.8 Myr. Furthermore,
computed rates refer to rotation around a vertical
axis of a small rigid equidimensional element,
while paleomagnetic rotations may represent con-
siderable blocks. Nevertheless, we ¢nd large parts
of the Aegean rotating in the same manner. In
particular, a mode of clockwise rotations on the
Peleponessos agrees with the results of Le Pichon
et al. [39].

6.4. Geodynamic models compared with
paleomagnetic data

The young rotation phase of the eastern arc
and the revised timing and rate of rotation of
the western arc form new constraints on the
mechanism of Aegean deformation. It would ap-
pear that at around 0.8 Ma an important change

Fig. 5. Tectonic models for the Aegean as discussed in the text. A: Model based on increase in resistance at the central segment
of the subduction zone [35,37,40]. B: Model involving a change of activity of the North Anatolian fault [30]. C: Model involving
lateral migration of slab detachment [43].
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occurred in the distribution of forces acting on the
region. We will evaluate three previously pro-
posed models for the tectonic evolution, in the
light of our new observations.

A ¢rst scenario explains the prevalence of arc-
parallel extension in the southern Hellenic arc to
be caused by an increase in resistance at the cen-
tral segment of the subduction zone, following,
perhaps, incipient collision with the African con-
tinental lithosphere [35,37,40]. From a geometri-
cal point of view, such a blocking of southward
motion could be associated with clockwise rota-
tion of the western arc and anticlockwise rotation
of the eastern arc segment (Fig. 5A). However,
the arc-parallel extension is estimated to have
started signi¢cantly earlier than 0.8 Ma, and was
dated at about 2^4 Ma [37] and 3^6 Ma [40]. The
role of resistance, however, might be small since
the outermost accretionary arc sediments are
probably still unconsolidated and may oppose lit-
tle resistance to deformation (Muttoni, personal
communication, 1999).

A second scenario involves an essential role of
the westward moving Anatolian plate. Armijo et
al. [30] argue that the onset of rapid extension
across the Gulf of Corinth re£ects the westward
propagation of the North Anatolian fault system
(Fig. 5B). The geometry of extension would cause
the Peloponessos to rotate clockwise relative to
the area north of the Gulf, a con¢guration which
could at least partly explain our new observa-
tions. Temporal changes in the North Anatolian
fault system have also been suggested to explain
the Pleistocene change in the pattern of extension
[41].

A third scenario entails changes in deformation
around 0.8 Ma to re£ect a change in the nature of
the plate boundary of northwestern Greece (Fig.
5C). At present, subduction of African lithosphere
below the SW moving Aegean overriding margin
terminates in the region of the Ionian islands.
West of Epirus, the two plates collide and con-
vergence is largely blocked. Geodesy indicates the
transition to be localized in a narrow zone (Fig. 4)
of which the Kefallonia fault zone is the most
important discontinuity (Fig. 5). Geometrically,
we expect the transition from subduction to colli-
sion to be associated with clockwise rotation of

the western Hellenic arc (Fig. 5). This is con-
¢rmed by the rotation pattern computed from
geodesy and by the results of numerical modelling
[41]. Numerical modelling also suggests that a
change in the nature of the margin of northwest-
ern Greece can also account for the Pleistocene
change in the pattern of extension [42]. A change
in collisional state can result from the southeast-
ward propagation of a horizontal tear in the sub-
ducted African lithosphere below the western
margin, as derived from tomography [43,44].
Slab detachment will locally stop the roll back
of the subduction zone since the weight of the
slab is no longer transmitted to the surface por-
tion of the plate. If indeed a transition from sub-
duction to collision causes clockwise rotation, we
may speculate that also the rapid Pleistocene ro-
tation of the western arc is caused by lateral mi-
gration of slab detachment, while at the same time
o¡ering a possible mechanism for the Pleistocene
uplift of the Hellenic arc through a rebound pro-
cess following detachment [43]. Van der Meulen et
al. [45] argue for such a mechanism along the
Adriatic peninsula based on an analysis of vertical
movements. Moreover, increased slab pull at the
still continuous segment of the subduction zone is
likely to increase roll back. The increase may be
considerable considering the old and dense Ionian
oceanic crust. Detachment would thereby a¡ect
the Hellenic arc along its full width, but whether
this could also induce (anticlockwise) rotations on
the eastern arc segment must at present remain
speculative.

7. Conclusions

Our paleomagnetic data show that the western
Aegean arc underwent a clockwise rotation phase,
whereas the eastern arc experienced anticlockwise
rotations. Furthermore, the results from the west-
ern arc indicate that the clockwise rotation phase
took place between V0.8 Ma and Recent on Za-
kynthos and at least 6 1.8 Ma on the Pelopones-
sos. The anticlockwise rotation phase in the
south-eastern arc may be equally young (6 1.8
Ma), although dating is insu¤ciently accurate.
The current pattern of rotations appears to match
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the interpreted geodetic data, which indicate (con-
siderable) clockwise rotations in the western Ae-
gean arc and (small) anticlockwise rotations in the
eastern Aegean arc. Our AMS data agree with
arc-parallel extension in the S and SE Aegean
arc, and arc-normal compression in the NW
part, as derived from geologic and geodetic
data. At the time of our rotation phase, the Ae-
gean area was subject to major uplift and a major
change in overall stress regime.
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Appendix 1

Results from NRM analysis from the di¡erent
sections/sites along the Aegean outer-arc (for
sample codes, see Fig. 1); (no) tc = (un)corrected
for bedding tilt, ages are indicated. N = number of
specimens; D, I = site mean ChRM declination
and inclination; k = Fisher's precision parameter;
K95 = 95% cone of con¢dence. Type 1 indicates
reliable results, Type 2 gives an indication of the
sense of rotation, and Type 3 is unreliable. N (R)
represents normal (reversed) polarity, rot = rota-
tion with (a)c indicating (anti)clockwise. For de-
tails on ChRM data from Zakynthos, we refer to
[6]. Asterisk (*) marks the data used to calculate
the mean of an area.

Biostratigraphy [22,46^48]; apresence of large
Gephyrocapsa spp., H. balthica and H. selli, ab-
sence of C. Macintyrei and Gephyrocapsa sp.
3 = NN19d [17], 1.22^1.373 Ma; brelative ages
after Hageman [10] ; cG. bononiensis [7], 2.41^
3.31 Ma; dG. margaritae and D. assymetricus
[7], 3.81^4.12 Ma; eH. selli and small Gephyrocap-
sa, no oceanica, until 1.71 Ma; f P. lacunosa, R.
pseudoumbulica, D. tamalis, H. selli, D. aymetri-
cus, small Gephyrocapsa, D. Brouweri, no oceanica
(this study), 4.91^0.44 Ma; gP. lacunosa (this
study), until 0.44 Ma; hG. ruber and G. in£ata
[49], from 2.09 Ma; iGephyrocapsa oceanica, small
Gephyrocapsa, P. lacunosa (this study), until 0.44
Ma; jGephyrocapsa oceanica, small Gephyrocapsa,
P. lacunosa, 12 m Macintyrei (this study), until
1.67 Ma; other ages are derived from the Geo-
logical map of Greece.
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Locality Code N Dno tc

(³)

Ino tc

(³)

k K95

(³)

Type Dtc

(³)

Itc

(³)

k K95

(³)

Polarity Rot Age (Ma)

Lefkas

Komilio KOM 4 ^ ^ ^ ^ 3 ^ ^ ^ ^ N ^ Mid^Upper

Pliocene

Alatron ALA 6 ^ ^ ^ ^ 3 ^ ^ ^ ^ N ^ Burdigalian^

Langhian

Kolivata KOL 4 ^ ^ ^ ^ 3 ^ ^ ^ ^ N ^ Langhian

Kefallonia

LUXmeana 70 159.0 349.1 40.1 2.7 1 176.6 351.2 45.1 2.6 N/R 3 ac V1.9^1.0

Luxurion LUX 14 346.4 57.7 52.2 5.6 1 9.2 53.9 88.6 4.2 N 9 c Plio/Pleistocene

Luxurion LUX 56 157.5 346.9 44.8 2.9 1 173.7 350.4 45.4 2.9 R 6 ac Plio/Pleistocene

Spartia SPA 28 129.8 341.3 11.3 13.5 2 161.7 344.0 26.0 5.5 R ^ Plio/Pleistocene

Liakas LIA 12 153.9 345.6 26.0 5.5 2 168.3 338.2 17.0 10.8 N/R ^ Messinian

Zakynthos

mean 8 ^ ^ ^ ^ 1 21.6 48.8 128.0 4.9 N/R 22 c 8.11^0.77

Peloponessos

mean 4 ^ ^ ^ ^ 1 16.1 55.2 325.6 5.1 N/R 16 c Pliocene

Pyrgos Basin:b

Aghios Andreas AA 5 25.2 51.7 35.8 13.0 2 14.0 55.5 36.4 12.8 N ^ Plio/Pleistocene

Killini* KIL 11 183.50 370.9 58.1 6.0 1 205.4 357.0 53.7 6.3 N/R/N 25 c Plio/Pleistocene

Pineos PIN 7 356.1 57.2 43.0 9.3 2 357.4 65.2 43.0 9.3 N ^ Pleistocene

Erymanthos ERI 6 194.4 354.9 97.4 6.8 2 195.8 343.3 96.4 6.9 R/N ^ Pliocene

Neraida NER 5 211.9 346.6 37.9 12.6 2 207.6 348.6 37.9 12.6 R Pliocene

Krionero* KRI 14 14.8 55.2 87.0 4.3 1 10.7 53.5 87.0 4.3 N 11 c Pliocene

Vounargon VOU 5 201.9 355.1 59.3 10.0 2 194.0 350.5 54.7 10.4 R ^ Pliocene

Al¢oussa ALF 6 185.0 327.0 14.2 18.4 2 184.7 344.2 14.3 18.3 R ^ Pliocene

Lalas LAL 6 2.6 48.7 147.2 5.5 2 358.7 51.4 197.1 4.8 N ^ Pliocene

Kalithea KAL 4 161.8 362.6 476.0 4.2 2 186.6 352.4 475.9 4.2 R ^ Pliocene

Grillos GRI 3 346.5 40.4 345.7 6.6 2 357.7 41.1 345.7 6.6 N ^ Upper Pliocene

Chrysophylli* CHR 15 21.9 40.2 64.2 4.8 1 12.1 57.4 42.4 5.9 N 12 c Pliocene

South:

Kefalas* KEF 11 13.0 52.3 89.1 4.9 1 16.5 52.4 154.0 3.7 N 17 c Upper Pliocene

Gythion GIT 2 7.7 41.6 0.0 99.9 2 8.0 48.6 ^ ^ N ^ Upper Pliocene

Glikovrisi GVR 2 186.2 348.0 0.0 99.9 2 180.0 350.8 ^ ^ R ^ Upper Pliocene

Peloponessos

East:

Megara MEG 12 3.1 48.9 20.5 9.8 1 2.7 46.7 35.5 7.4 N/R/N/R/N 3 c Plio/Pleistocene

Corinth COR 5 177.4 357.9 26.3 15.2 2 177.4 357.9 26.3 15.2 R/N ^ Pleistocene

Centre:

Megalopolis ME 71 2.6 53.8 58.1 2.2 1 1.2 52.6 52.0 2.4 R/N 1 c 0.9^0.4

Milos

mean 2 ^ ^ ^ ^ 1 184.5 351.8 ^ ^ 5 c

Basalt MYL 1 7 171.6 324.2 43.4 9.3 2 171.6 324.2 43.4 9.3 R ^ Pliocene

Myl10 MYL 10 5 12.5 46.3 73.6 9.0 2 11.2 51.2 73.6 9.0 N ^ Plio/Pleistocene

Myl11 MYL 11 5 357.7 52.0 359.1 4.0 2 354.4 56.4 359.1 4.0 N ^ Plio/Pleistocene

Myl15* MYL 15 7 347.2 54.3 66.8 7.4 1 348.9 57.1 66.8 7.4 N 11 ac Plio/Pleistocene

Hot* HOT 11 185.3 348.9 114.7 4.3 1 192.0 335.8 114.7 4.3 N/R/N/R 12 c Early Pliocene

Kythira

Avlemonas AV 8 345.9 56.6 39.2 9.0 2 341.1 63.7 43.5 8.5 N ^ Middle Pliocene

Kapsali KAP 12 13.1 49.8 29.2 8.2 1 351.9 39.4 29.7 8.1 N 8 ac Miocene

Manitochori MAN 6 355.2 49.2 20.2 15.3 2 353.4 47.1 16.8 16.8 N ^ Miocene

Crete

Fortetsac FOR 7 1.1 41.4 76.4 6.9 3 1.1 41.4 76.4 6.9 N ^ Pliocene

Vasileis VAS 7 356.4 54.9 161.1 4.8 3 354.4 46.5 161.1 4.8 N ^ Pliocene

Prassas PRA 8 358.5 51.2 87.6 6.0 3 or no rot 3.0 45.7 153.8 4.5 N ^ Mio/Pliocene
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Appendix 2

Results from AMS analysis from the di¡erent
sections/sites along the Aegean outer-arc, cor-
rected for bedding tilt ; ages are indicated.
N = number of specimens; D, I = mean azimuth

and dip of kmax axes; ND, NI = errors in mean
kmax axes; L = magnetic lineation (kmax/kint). For
location of AMS data from Zakynthos, we refer
to [6]. Asterisk (*) marks not enough data to per-
form a Hotelling's T anisotropy test [50].

Locality Code N Dno tc

(³)

Ino tc

(³)

k K95

(³)

Type Dtc

(³)

Itc

(³)

k K95

(³)

Polarity Rot Age (Ma)

Gallini GAL 2 143.9 380.4 0.0 99.9 2 162.7 368.6 ^ ^ R ^ Pleistocene

Koutres KOU 7 1.7 56.5 801.4 2.1 3 or no rot 357.9 51.9 60.2 7.8 N ^ Pliocene

Moria MOR 8 356.6 46.2 27.9 10.7 3 or no rot 10.9 61.5 34.4 9.6 N/R ^ Plio/Pleistocene

Galipe LIP 2 180.6 352.4 0.0 99.9 2 or no rot 186.0 357.8 ^ ^ R ^ Pliocene

Aghios Vlassiosd VLA 4 354.5 52.3 134.6 7.9 3 345.1 45.0 134.6 7.9 N/R ^ Pliocene

Moni Agarathou AGA 6 356.1 36.2 345.1 3.6 3 358.4 38.9 345.2 3.6 N ^ Pliocene

Chorio CHO 7 355.4 56.2 212.7 4.1 3 or no rot 2.9 55.2 212.7 4.1 N ^ Pliocene

Aghios Miron MIR 5 356.0 42.9 418.2 3.7 3 344.7 40.2 418.2 3.7 N ^ Messinian

Chersonissos HER 8 340.0 40.5 68.0 6.8 1 334.3 31.8 68.0 6.8 N 26 ac Miocene

Kassos

Aghios Mamas MAM 7 ^ ^ ^ ^ 3 ^ ^ ^ ^ R/? ^ Miocene

Chelatron 1 CHE 1 5 3.2 44.9 167.0 5.9 3 13.2 40.0 167.0 5.9 N ^ Miocene

Chelatron 2 CHE 2 5 336.7 47.3 99.5 7.7 2 337.3 48.1 99.5 7.7 N 23 ac Miocene

Chelatron 3 CHE 3 5 2.5 51.8 582.7 5.1 3 350.2 46.2 582.7 5.1 N/R ^ Miocene

Karpathos

Lefkos LEF 17 354.9 55.2 102.9 3.5 3 356.2 60.9 83.7 3.9 N ^ Plio/Pleistocene

Amoopie AM 5 354.5 49.9 524.3 3.3 3 339.6 43.9 524.3 3.3 N ^ Pliocene

Aghios Ioannis IO 9 166.1 352.8 49.9 7.4 1 162.0 355.9 48.4 7.5 R 18 ac Pliocene

Pigadiaf PI 7 8.5 57.6 182.6 4.5 3 340.1 69.4 182.6 4.5 N ^ Pliocene

Rhodos

mean 8 ^ ^ ^ ^ 1 162.5 346.8 45.3 8.3 18 ac

Ancient Kameiros* AK 19 356.9 19.7 9.5 11.5 1 352.8 45.8 9.4 11.6 N 7 ac Pliocene

ASH* ASH 12 115.1 383.9 11.8 13.2 1 152.0 336.8 8.8 15.5 R 28 ac Oligocene?

Falliraki* FA 8 340.2 49.4 70.0 6.7 1 348.7 48.6 70.0 6.7 N 11 ac Upper Pliocene

Falliraki Beach* FB 11 326.9 60.4 37.7 7.5 1 337.7 63.0 56.8 6.1 N 22 ac Upper Pliocene

Kallithea KA 4 149.9 332.3 36.7 15.4 2 157.1 336.9 36.7 15.4 R ^ Upper Pliocene

Kolimbia*g KO 17 163.8 342.2 18.2 8.6 1 165.8 342.2 18.2 8.6 R 14 ac Uppermost

Pliocene

Ladiko*h LA 9 332.2 30.2 44.8 7.8 1 335.1 29.6 44.8 7.8 N 25 ac Pliocene

Pefki Beach*i PB 12 184.9 345.5 42.7 6.7 1 173.0 349.8 42.6 6.7 R/N 7 ac Upper Pliocene/

Pleistocene

Pylonasj PY 6 163.5 337.5 21.4 14.8 2 160.2 342.3 21.4 14.8 R/N ^ Uppermost

Pliocene

Skaloniti SK 5 176.8 330.5 324.2 4.3 2 168.9 351.0 324.2 4.3 R ^ Pliocene

Tsambika TS 5 167.9 341.1 11.7 23.4 2 168.7 342.4 11.7 23.4 N/R ^ Pliocene

Vagies VA 4 348.0 38.4 26.1 18.3 2 351.2 18.8 26.1 18.3 N ^ Upper Pliocene

Appolakkia* AGI 17 35.7 58.1 35.3 6.1 1 335.8 56.1 35.3 6.1 N 24 ac Pliocene
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Locality N D
(³)

I
(³)

ND
(³)

NI
(³)

L Age
(Ma)

Lefkas
Komilio ^ ^ ^ ^ ^ Mid^Upper Pliocene
Alatron ^ ^ ^ ^ ^ Burdigalian^Langhian
Kolivata ^ ^ ^ ^ ^ Langhian
Kefallonia
mean 149 149.3 0.6 5.7 1.3 1.0063 V1.9^1.0
Luxurion 95 158.9 1.3 4.7 1.4 1.0077 Plio/Pleistocene
Spartia 31 309.4 2.1 4.0 1.3 1.0062 Plio/Pleistocene
Liakas 23 125.7 2.4 14.5 4 1.0065 Messinian
Zakynthos
mean 196 146.0 0.5 4.2 1.3 1.0082
Porto Roma 25 173.1 2.3 4.8 3.2 1.0070 1.03^0.77
Bochali 18 195.9 1.9 6.6 2.1 1.0048 1.37^1.24
Zakynthos Town 40 24.8 1.6 7.0 2.1 1.0083 1.94^1.44
Gerakas 16 243.8 45.5 15.6 5.7 1.0033 1.94^1.61
Alikanes 18 164.1 3.7 15.8 2.6 1.0026 3.31^2.73
Kalamaki Beach 36 156.3 9.9 5.5 3.2 1.0064 5.95^5.21
Aghios Sostis 8 168.5 0.2 14.3 4.1 1.0071 Messinian
Limnou Keriou (N) 57 330.5 3.9 3.4 1.8 1.0103 7.24^6.60
Linmou Keriou (S) 4 160.5 6.0 20.7 7.5 1.0068 Tortonian
Ormos Alikon 33 300.4 3.0 3.8 1.4 1.0138 7.64^7.24
Vugiato 14 153.8 4.6 6.6 3.7 1.0160 8.11^7.70
Marathia 8 319.5 10.2 21.8 4.5 1.0124 Serravalian
Lagopodo 16 307.9 2.8 40.3 6.2 1.0023 Early Middle Miocene
Peloponessos
Aghios Andreas 13 345.4 3.1 56.0 4.7 1.0010 Plio/Pleistocene
Killini 63 312.0 3.1 38.4 2.7 1.0006 Plio/Pleistocene
Pineos 24 316.1 6.3 48.6 5.9 1.0007 Pleistocene
Erymanthos 19 181.8 2.8 64.9 4.7 1.0004 Pliocene
Neraida 21 347.0 5.7 13.7 3.4 1.0017 Pliocene
Krionero 22 287.8 6.2 22.8 4.7 1.0009 Pliocene
Vounargon 9 304.6 4.2 14.7 3.6 1.0043 Pliocene
Lalas 10 344.6 7.5 26.9 15.7 1.0022 Pliocene
Kalithea 7 178.1 15.9 22.7 10.4 1.0066 Pliocene
Grillos 7 91.9 3.2 15.0 8.3 1.0021 Upper Pliocene
Chrysophylli 15 1.9 4.8 7.0 2.7 1.0060 Pliocene
Kefalas 17 53.9 0.7 18.0 2.3 1.0015 Upper Pliocene
Gythion 27 280.8 4.1 34.6 5.5 1.0018 Upper Pliocene
Glikovrisi 17 239.6 0.2 17.8 4.0 1.0015 Upper Pliocene
Megara 21 359.9 1.2 9.8 7.2 1.0052 Plio/Pleistocene
Corinth 11 34.0 7.5 24.5 8.1 1.0014 Pleistocene
Milos
Basalt 7 293.1 4.4 21.9 5.8 1.0417 Pliocene
Myl10* 5 89.7 5.0 18.6 4.3 1.0053 Plio/Pleistocene
Myl11* 5 333.2 0.0 28.9 5.0 1.0073 Plio/Pleistocene
Myl15 7 139.1 22.4 30.8 9.9 1.0047 Plio/Pleistocene
Hot 98 240.5 15.0 40.2 12.1 1.0004 Early Pliocene
Kythira
mean 38 100.7 5.7 14.4 4 1.0033
Avlemonas 12 347.9 38.3 31.2 17.4 1.0067 Middle Pliocene
Kapsali 26 89.4 1.7 7 2.2 1.0030 Miocene
Manitochori 13 114.7 6.9 29.9 6.3 1.0034 Miocene
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